

Emerging Earned Value Management Technique *Earned Schedule*

November, 2009

Michelle Jones, Jason Meyer, Doug Flanagan Alexandria, VA

Booz | Allen | Hamilton

This document is confidential and is intended solely for the use and information of the client to whom it is addressed.

Table of contents

- Introduction
- Civil Agency Case Study
- US Government Case Study
- Resources for Applying Earned Schedule to your Project

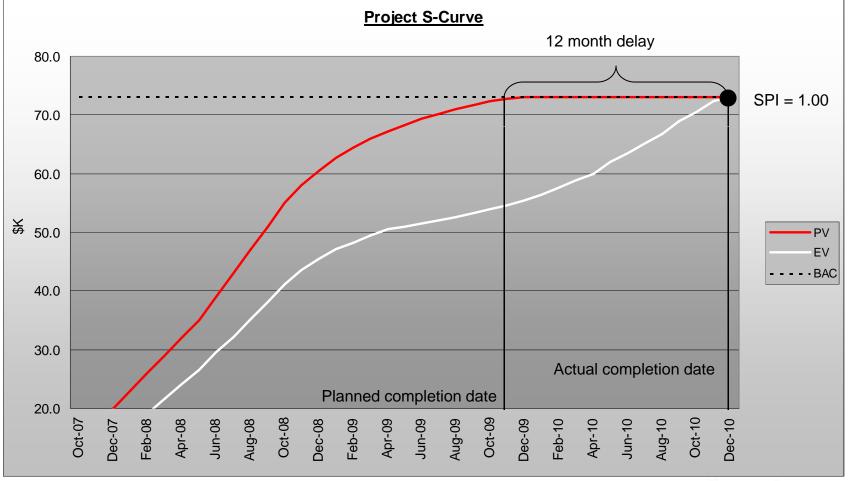
Introduction to Speakers

- Our EVM Experience:
 - PMO-level EVM Support for Projects at EPA, GSA
 - Program-level EVM Analysis at US Coast Guard
 - CIO-level EVM Analysis for USAID
 - Generate EVM data and reports for Booz Allen Projects

What is Earned Schedule?

• A New Metric

- Lipke devised a new metric to combat SV and SPI limitations and created *Earned Schedule*
 - A measure of work completed in a designated increment of time


Added Value without extra data collection

- Additional calculation based on data collected for ANSI-748 Compliant Earned Value Management System
 - Inputs: Start date (plus last day of first month), finish date (plus last day of previous month), PV, EV and BAC
 - Outputs: Earned Schedule, forecasted completion date
- A technique to compensate for the downfall of traditional Earned Value and SPI calculations
 - No matter the project, the delay, or early delivery, SPI and SV will always track back to unity at then end of every PoP showing perfect schedule adherence at complete

Basis for Intuitive Schedule Forecasts

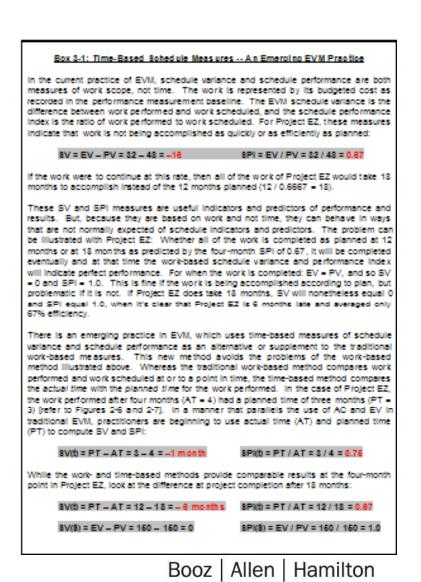
• Provides scheduled forecast in dates based on current schedule performance metrics applied to the duration of work remaining

Weakness of traditional EVM: a project that finishes late has an SPI = 1.00 once all planned work is complete

Credibility of Methodology

- Included as Emerging Practice in EVM Practice Standard (2004)
 - · Basic principles described

Method validated by a combination of research and case study examples

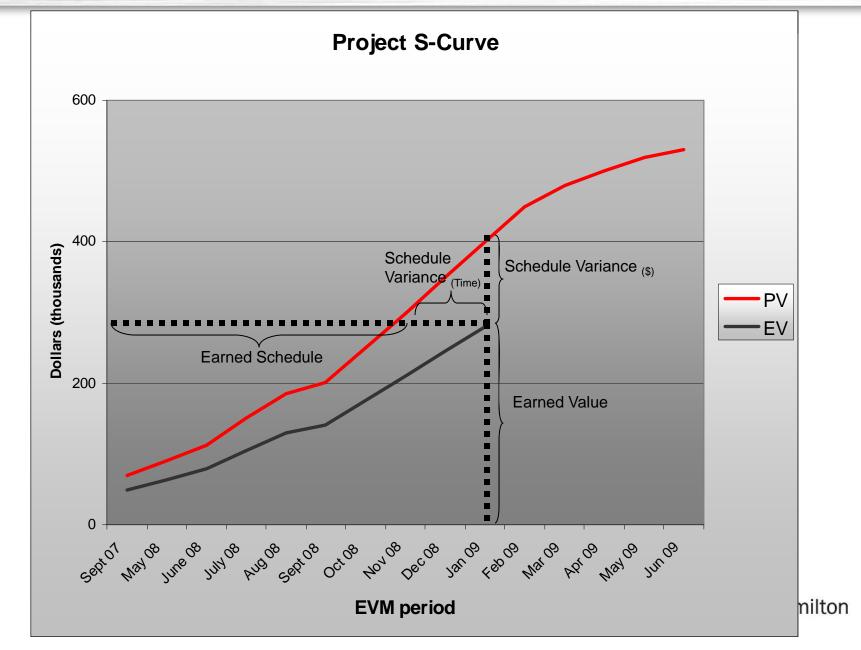

- Academic research
 - U of Ghent Belgium using simulated network schedules
- Practitioner research
 - Retrospective analysis using real project data. E.g. Henderson and Vandevoorde

6

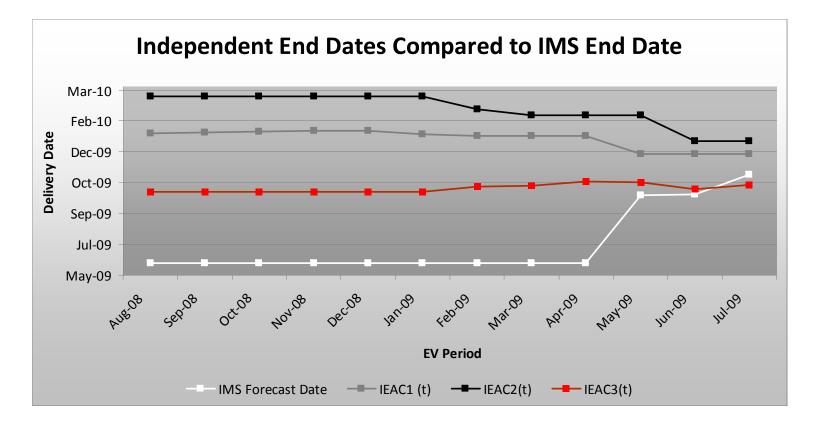
- · Case study examples
 - Lew Hecht US Navy case study

Global uptake of the method

- Reported practitioner experiences
- See Earned Schedule website


Drivers for using Earned Schedule

- Provide Reality Check for critical path date
 - Provides an independent estimate at complete in time. This can be compared against the critical path to assess its reasonableness.
- Provide project controls benefit for the investment into an EVMS on an FFP project
- Compensate for limitations of SPI and SV
 - SPI and SV always show perfect schedule adherence at the end of every completed project
 - Most useful during part of project when SPI trends to 1.0
 - Thinking of schedule in terms of dollars is hard; ES converts dollars to time
 making schedule metrics more easily understood


• Assess and compensate for reliability of IMS is in question

Earned Schedule metrics work in the same manner as Earned Value cost metrics

Earned Value Unit of Measurement: Dollars (\$)	Earned Schedule Unit of Measurement: Time (t)	
Earned Value (EV)	Earned Schedule (ES)	
Actual Cost (AC)	Actual Time (AT)	
SV = EV-PV	SV _t = ES-AT	
SPI = EV/PV	SPI _t = ES/AT	
Estimate at Complete (EAC)	Estimate at Complete (EAC _{time})	
Budget at Complete (BAC)	Planned Duration (PD) number of periods	
Budgeted Cost for Work Remaining (BCWR=BAC- BCWP _{cum})	Planned Duration for Work Remaining (PDWR = PD-ES)	
To Complete Performance Index (TCPI) = BCWR / ETC	To Complete Schedule Performance Index (TSPI) = PDWR / Time Remaining	oz Allen Hamilton

Using Earned Schedule forecasts, in conjunction with other schedule forecasts can lead to early warning of late delivery

Table of contents

- Introduction
- Civil Agency Case Study
- US Government Case Study
- Resources for Applying Earned Schedule to your Project

Background: Project objective and Booz Allen role

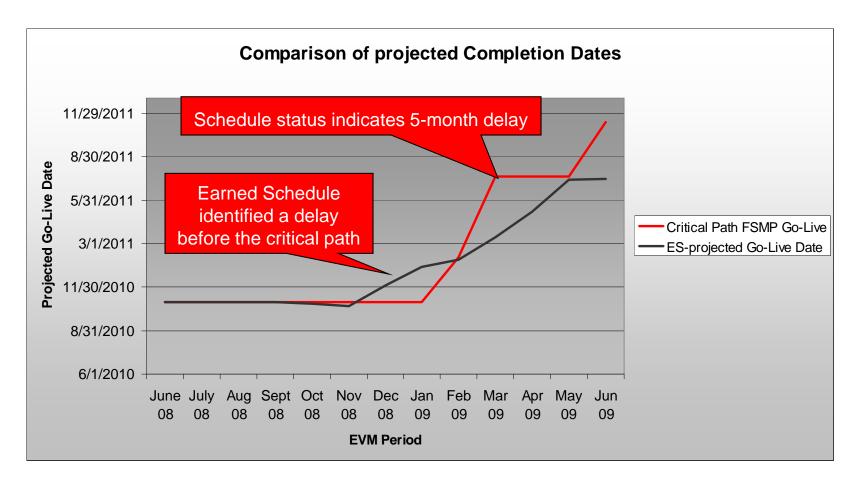

- The Project will replace the client's financial system with new software and business processes. The Project is a high-risk, high-impact system implementation project therefore a successful result is critical to the client.
- Booz Allen has provided support to The Agency in the following areas:
 - Project Management
 - Accounting and Financial Management Advisory Services
 - Data Standardization
 - CPIC Support
 - Data Migration Strategy
 - Review of Internal Controls

Booz Allen support under the Project Management Task Order:

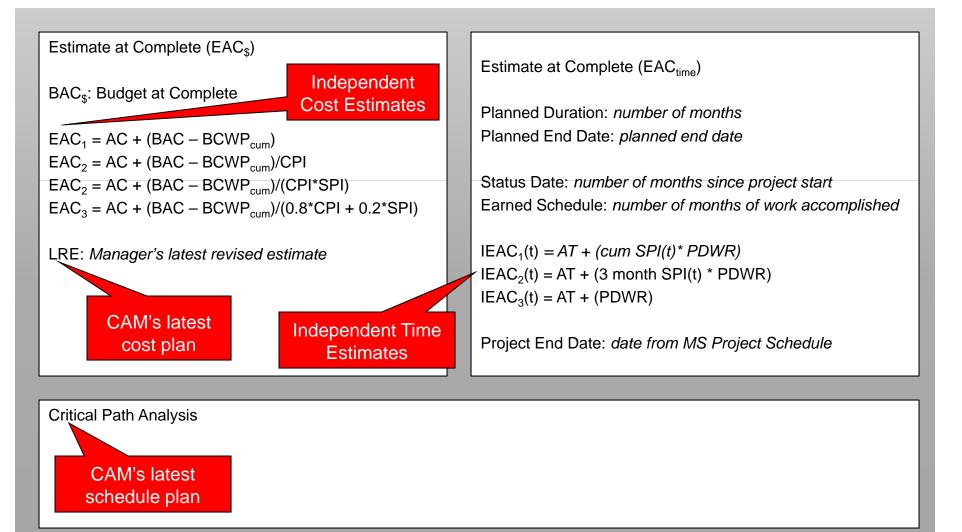
- ✓PM Procedures
- ✓ PM Tools analysis
- ✓PM Tools Configuration and Implementation
- ✓Project Management Plan
- ✓PMO operations
- ✓Risk Management
- ✓Quality Management
- ✓ Integrated Baseline Review
- ✓ Monthly EVM Status Process

EVM-related business problem and challenges

- OMB Mandate to maximize use of fixed priced contracting and OMB mandate to perform Earned Value Management
- Management's desire for accountability as well as compliance
- Definition roles and responsibilities (team lead, CAM, organizational role)
- Changing level of project controls maturity: Initial perception that the work is not integrated and that there were no dependencies between task areas to current integrated project plan with resources loaded at the activity level



Project History


•April 2008 Implementation Contractor Award

- •June 2008 Integrated Baseline Review
 - 10/1/2010 go-live
 - The Agency resources planned in LOE work packages
- •Project experiences implementation delays
 - Account Code Structure delay
 - BPR Core Lead Staffing
- •August 2009 Integrated Baseline Review
 - 11/14/2011 go-live
 - The Agency resources planned in detailed milestone-work packages

Looking Back: Earned Schedule view of the project

Looking Forward: How to present ES to the client

Door frainten

Sample with Metrics: Data conversion

Estimate at Complete (EAC _{time})
Planned Duration: <i>21 Months</i> Planned End Date: <i>October 2010</i>
Status Date: 7 Months
Earned Schedule: 4 Months
IEAC1(t) = 28 Months – May 2011
IEAC2(t) = 30 Months - July 2011
IEAC3(t) = 24 Months – January 2011
Project End Date: 22 Months – November 2010

Critical Path Analysis: Data Conversion is forecasted to be 2 months late, and is on the critical path. Therefore, it will push the go-live date out 2 months.

Using Earned Schedule to enhance Control Account accountability

Control Account	Critical Path Milestone
Business Process Reengineering	Process Maps Approved
Configuration	Compiled Configuration Guides Complete
Conversion	Production Conversion Complete
Integration	Integration Test Complete
Testing	User Acceptance Test Complete
Training	Refresher Training Complete
The Project Project	The Project Go-Live

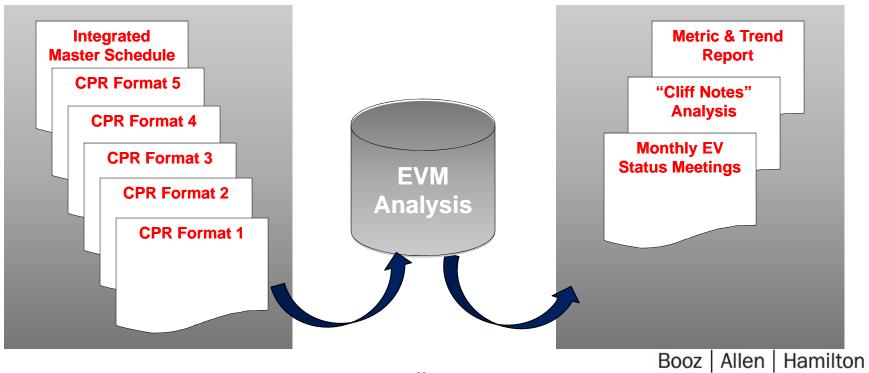
Case Study take aways

- Earned Schedule projected the delay before the IMS did
- Earned Schedule is useful, even if the project schedule is not robust
- For analysis and reporting purposes, we need to calculate Earned Schedule at the project level. For management and accountability purposes, we need to calculate it at the task area level.
- This client needed to perform detailed planning in order to develop an executable plan
- Earned Schedule is only as good as your Earned Value data. If the data does not accurately represent the state of the project, it will not be a provide an accurate Estimate At Complete
- While the PM Lead appreciated the significance of Forecasting ES, consideration of Team Lead EVM maturity postponed rollout
- Earned Schedule calculations by task area require an Excel Spreadsheet, and are not supported by EVM tools... yet

Table of contents

- Introduction
- Civil Agency Case Study
- US Government Case Study
- Resources for Applying Earned Schedule to your Project

Government Asset Acquisition Program


- Background
 - A \$20+ billion, 25 year project aimed at updating the agency's entire fleet of assets
 - The agency awarded the contract to a major contractor who integrated the efforts of two major primes
 - The lead integrator was in charge of all Project Management activities
 - The client worked closely with contractors yet had little access to early warning signs into many of the eventual problems on the project

Programmatic problems forced the agency to assume sole ownership of project management roles

- After major programmatic and operational problems and highly negative media attention on one of its higher-profile projects, the agency took sole ownership of the integration and management activities
- Since 2007 the agency has matured its project management capabilities including Earned Value (EV) analysis and IMS analysis/management; Booz Allen has been the lead in collecting, analyzing, and reporting on this data

Booz Allen leads the Earned Value analysis

 Because of Booz Allen's role within the agency, the team was able to seamlessly implement ES analysis on one of the bigger projects in order to enhance monthly support

Case Study: Multi-million dollar asset acquisition project Why Earned Schedule?

- Although the agency assumed integrator role, the prime still maintains the IMS
 - IMS is very large (over 10,000 lines)
 - IMS is integrated with dozens of projects
 - Contractor attrition has led to delay in IMS updates as well as a lag in delivery
 - IMS not resource loaded
 - Critical path issues
 - The IMS delivered to the agency is populated through other internal reporting systems therefore the IMS is not used as an agile project management tool by the contractor; rather it is merely a static deliverable delivered to the agency on a monthly basis
 - All of these factors have made timely schedule analysis difficult to perform

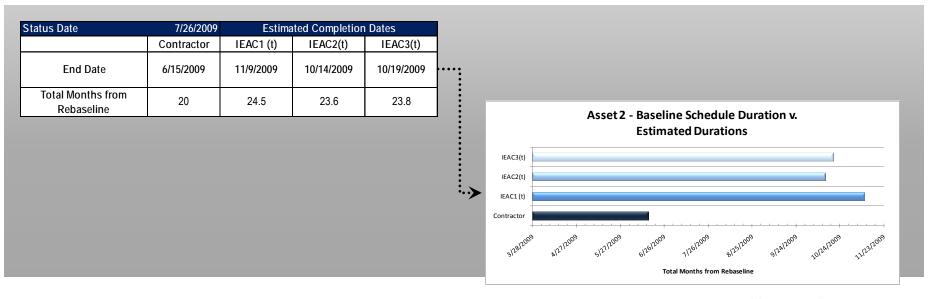
Case Study: Why Earned Schedule?

- As the lead integrator, and in response to the poor cost performance on the first in class asset, the agency has matured their cost estimation capabilities on in-progress projects
- The first asset experienced both cost and schedule slips, yet schedule prediction capabilities have not matured at the same rate as cost prediction capabilities
- Because the agency did not fully trust the IMS data and they were not maturing their schedule prediction capabilities at the same rate as their cost prediction capabilities, Booz Allen implemented the use of ES on this contract

Case Study: Earned Schedule as a schedule predictor – Inputs

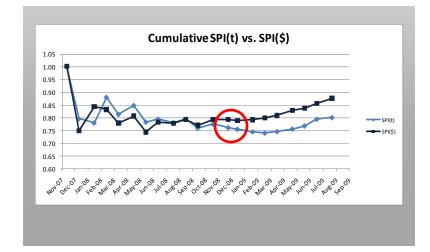
- The Booz Allen EV support team implemented the use of Earned Schedule analysis on this project using Lipke and Henderson's available tools in Jan '09
- Lipke's ES Calculator is now used to derive ES metrics
 - Uses only EV data taken from the format 1 and contract
 - Example shown below

					Initial Project Data							Proj	ect at Complete	e Data	
	Status Date	Actual Start		10/27/2007		mpletion Dat		6/15/2009	Planned Duration Remain	2.8			mpl Date =		
	7/26/2009	1st Day of the Ne		11/26/2007	Last Day of		th	5/27/2009	Original Duration	19.6			revious Mo =		
		1st Month Fr	action	0.9667	Last Mor	nth Fraction		0.6000	Budget at Complete	28,511.43		Last mo Fra	action (Act) =	0.0000	
Date	BCWPcum	BCWScum	# Pc=>Sc	E-Count	Numerator	enomina	t InterpVal	EScum	ESmo	SPI(t)mo	SPI(t)cum	A-Count	AT	SV(t)mo	SV(t)cum
11/25/2007	895.49	893.46	1	0.9667		2 149	0.001	0.9680	0.9680	1.0014	1.0014	1	0.9667	0.0014	0.00
12/23/2007	1.792.57	2,387.99	1	0.9667		899 149			0.6002	0.6002	0.7974	2	1.9667	-0.3998	-0.39
1/27/2008	2,652.34	3.141.29		1.9667		264 75			0.7493	0.7493	0.7812	3	2.9667	-0.2507	-0.64
2/24/2008	4,045.69	4,853.52		2.9667		904 171			1.1773	1.1773	0.8811	4	3.9667	0.1773	-0.47
3/23/2008	4,975.78	6,375.50		3.9667		122 152			0.5521	0.5521	0.8148	5	4.9667	-0.4479	-0.9
4/27/2008	6,549.87	8,107.34		4.9667		174 173			1.0204	1.0204	0.8493	6	5.9667	0.0204	-0.89
5/25/2008	7.238.17	9.717.40	5	4.9667		863 173		5.4648	0.3974	0.3974	0.7844	7	6.9667	-0.6026	-1.50
6/22/2008	8,708.07	11,106.35	6	5.9667		601 161		6.3398	0.8750	0.8750	0.7958	8	7.9667	-0.1250	-1.62
7/27/2008	9,773.59	12,536.05		6.9667		56 138	0.040	7.0071	0.6673	0.6673	0.7815	9	8.9667	-0.3327	-1.95
8/24/2008	11,052.40	13,908.63	7	6.9667		1335 138	0.961	7.9278	0.9207	0.9207	0.7954	10	9.9667	-0.0793	-2.03
9/21/2008	11,647.55	15,085.90	8	7.9667		541 143	0.378	8.3452	0.4174	0.4174	0.7610	11	10.9667	-0.5826	-2.62
10/26/2008	12,985.19	16,353.77	9	8.9667		449 137	0.327	9.2939	0.9487	0.9487	0.7766	12	11.9667	-0.0513	-2.67
11/30/2008	13,798.95	17,371.17	9	8.9667		1263 137	0.920	9.8868	0.5929	0.5929	0.7625	13	12.9667	-0.4071	-3.0
12/21/2008	14,617.10	18,514.85	10	9.9667		708 117	0.601	10.5685	0.6817	0.6817	0.7567	14	13.9667	-0.3183	-3.39
1/25/2009	15,342.95	19,335.17	11	10.9667		257 126	0.202	11.1694	0.6010	0.6010	0.7463	15	14.9667	-0.3990	-3.79
2/22/2009	16,195.52	20,239.84		10.9667		1110 126	0.875	11.8418	0.6724	0.6724	0.7417	16	15.9667	-0.3276	-4.12
3/22/2009	17,074.91	21,077.74	12	11.9667		721 101	0.708		0.8336	0.8336	0.7471	17	16.9667	-0.1664	-4.29
4/26/2009	18,103.71	21,821.50		12.9667		733 114			0.9317	0.9317	0.7574	18	17.9667	-0.0683	-4.35
5/24/2009	19,027.52	22,679.42		13.9667		513 82			0.9844	0.9844	0.7693	19	18.9667	-0.0156	-4.3
6/21/2009	20,165.68	23,522.63	15	14.9667		831 90			1.2931	1.2931	0.7956	20	19.9667	0.2931	-4.0
7/26/2009	20,948.23	23,874.77	16	15.9667		708 83	0.845	16.8121	0.9274	0.9274	0.8018	21	20.9667	-0.0726	-4.1


Case Study: Earned Schedule as a schedule predictor – Outputs

- Lipke and Henderson's template feeds these tables which show current metrics
 - The SPI(\$) has since began to trend back to 1.00 where the ES data shows a more realistic view of schedule performance

Jan '09 Data			Earned Schedule N	<i>Metrics</i>						
Actual Time (AT)	Earned Schedule (ES)	SV[t]	Planned Duration W	ork Remaining	Baseline Duration	SPI Trend	SPI(t)	TSPI	SPI(\$)	
4.97 Months Elapsed (since Rebaseline)	11.17 Months Worth of Work Com	blete 3.8 Months Behind Schedule	8.46 Months of Wor	rk Remaining	4.66 Months To Original Delivery	↓	0.75	1.81	0.79	
Jul	09 Data			Earned Schedule	— — — — — — — — —					_
		ned Schedule (ES)		Earned Schedule Work Remainin		uration	Trend	 SPI(t)	TSPI	SP

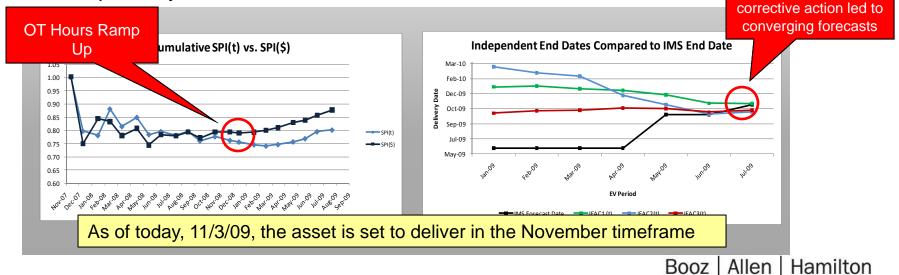

Case Study: Earned Schedule as a schedule predictor – Outputs

- Metrics are used to create end dates based on schedule performance
 - The tables below compare contractor to three independent estimates
 - IEAC1 (t) = Uses cumulative SPI (t)
 - IEAC2 (t) = Uses three month rolling SPI (t)
 - IEAC3 (t) = Assumes all work will complete as scheduled with an SPI(t) of 1.00

Case Study: Synopsis of the project before implementation of ES

- Before Earned Schedule Implementation (December '08 Data):
 - Delivery Date in the schedule: 6/16/09
 - Contractor admitted to a 12 week slip that IMS did not reflect
 - SPI(\$) was beginning to track back to 1.00

Case Study: Synopsis of the project during implementation of ES


•After Earned Schedule Implementation (January '09 Data):

•ES predicted a 6-8 month slip in delivery

•Agency has since allowed the use of OT hours to catch up

•As delivery nears, schedule has improved dramatically and both agency and contractor have agreed that a mid November delivery is possible.

Therefore early warning signs allowed agency to correct a potential 8 month slip to only 5 months Early detection and

Case Study: ES is then used in conjunction with other forecasts

- ES is not used as a stand-alone predictor however; it is used in conjunction with other sources of input
 - CPR format 5 and informal communication coming from the contractor
 - Cost data, invoices, estimates
 - Burn Rates
 - Integrated Master Schedule
 - Senior level management expectations and goals
- Ultimately ES is used with these sources of input in order to gain a more thorough picture of schedule performance so that the agency has a better idea of when their assets will be delivered

Government Agency Case Study – Take aways

- Earned Schedule is a better predictor than the information that was being provided by integrator
- ES has become a good add-on to verify end dates and keep the contractor accountable
- ES is a reliable add-in for any EV project but it should not be used as a stand-alone tool because of many factors affecting the reliability of the data
 - Material tasks earn the same schedule as labor tasks
 - Control Accounts hold both Labor and LOE tasks effectively washing out true schedule performance
 - At the level we applied it, ES does not weigh critical path tasks differently
 than non critical path tasks
 - More reliable at the control account level; but that was not possible on this project
- Ultimately only as good as the PMB

Table of contents

- Introduction To Earned Schedule
- Civil Agency Case Study
- US Government Case Study
- Resources for Applying Earned Schedule to your Project

Resources for adopting Earned Schedule

- Earned Schedule Website, including papers and training resources
 - http://www.earnedschedule.com/Home.shtml
- Wikipedia Site
 - http://en.wikipedia.org/wiki/Earned_Schedule

Earned Schedule Implementation Tips

- Educate your client or customer
- Make take time for adoption
- Even if you don't present ES metrics, they could contribute to better variance analysis
- Needs solid EVM data and a well constructed project schedule
 - LOE Tasks, Material Costs can dilute ES Data
- Run time before presenting to your client or customer is helpful
 - Helps detect IMS/EV integration problems
- Needs to be used in context of all PM tools
- When project is rebaselined you must set ES back to 0

Speaker Points of Contact

- Michelle Jones jones_michelle@bah.com
- Jason Meyer meyer_jason@bah.com
- Doug Flanagan flanagan_douglas@bah.com